New Regulatory Opportunities in DART

For Pharmaceutcal Development

A Short History of DART testing

Thalidomide (softenon in NL)

- Late 1950's on the market as drug against morning sickness
- Caused impaired limb growth in human embryo's (Phocomelia)
- Increased awareness of possible effects of drugs and chemicals
 on embryonic development

Thalidomide tragedy led to safety guidance for DART testing:

\rightarrow 1970s first guidelines for reproductive toxicity testing for medicines (FDA)
\rightarrow in 1980s for chemicals (OECD)
\rightarrow Global Harmonized DART Guideline for Pharmaceuticals in 1995 (ICH S5)

INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE

ICH HARMONISED GUIDELINE

DETECTION OF REPRODUCTIVE AND DEVELOPMENTAL TOXICITY FOR HUMAN PHARMACEUTICALS

S5(R3)

ICH
harmonisation for better health

Final version
Adopted on 18 February 2020

Effects of pharmaceuticals on reproductive cycle

Fertility and Early Embryonic Development (FEED)

 Toxicity study\rightarrow 2-4 weeks before conception - implantation

Start of dosage			Last day of dosage ${ }^{\text {a }}$	
Male rats	Premating		Cohabitation	
	4 weeks		3 weeks	
				Day 13
	Female rats		Presumed gestation	
				sarean ioning

Effects of pharmaceuticals on reproductive cycle

Embryo-fetal Developmental (EFD) Toxicity study

 \rightarrow Implantation - closure of hard palate \rightarrow Default 2 species (rodent and non-rodent)

Default DART testing under ICHS5(R3)

Effects of pharmaceuticals on reproductive cycle

Pre-post Natal Developmental (PPND) Toxicity study \rightarrow closure of hard palate - weaning \rightarrow Optional start at implantation \rightarrow Optional up to F1 generation

$F_{0} \quad F_{0}$ generation female rats
$F_{1} \quad F_{1}$ generation (offspring of F_{0} generation)
$F_{2} \quad F_{2}$ generation (offspring of F_{1} generation)
DG Day of gestation
DL Day of lactation

Classic models

Whole Embryo Culture (WEC) (1970s)
Embryonic Stem Cell Test (EST) (1990s)
Zebrafish Embryo Toxicity Test (ZET) (2000s)

Sanne Hermsen, RIVM

- Investigate effects on development during window of implantation - closure hard palate
- Endpoints based on morphology
- Validation effort by ECVAM WEC/cardiac EST (2004-2009)

S. Neurulation complete T. (Rotate view) U. Embryonic folding v. Primitive gut tube forms W. (Inside to outside view)
X. Major blood vessels form
$\star=$ Typicat age
range at birth

z. Lower limb bud forms A. Hand plate forms B1. Webbed fingers and toes
C1. Fingerstos C. Fingers/toes separate D1. Gonads differentiate by sex
E1. Eyelids form E1. Eyelids form

G1. Second trimester
H. Taste pores develop 1. Vernix caseosat covers skin K1. Lanugo replaced by vellus L1. HPA axis established
M1. M1. Fetus weighs about 500
$\frac{\text { с } \mathrm{B} \mathrm{G}}{M E{ }^{\text {B }}}$

Imaging

De Leeuw, 2020

Robotics

Konagaya, 2015

Tiered approach
Testing Batteries

Green, 2018

Organ on Chip

Machine Learning /
Artificial Intelligence

Step 5

NOTE FOR GUIDANCE ON THE DETECTION OF TOXICITY TO REPRODUCTION FOR MEDICINAL PRODUCTS \& TOXICITY TO MALE FERTILITY
(CPMP/ICH/386/95)

2.2. Other test systems

Other test systems are considered to be any developing mammalian and nonmammalian cell systems, tissues, organs, or organism cultures developing independently in vitro or in vivo. Integrated with whole animal studies either for priority selection within homologous series or as secondary investigations to elucidate mechanisms of action, these systems can provide invaluable information and, indirectly, reduce the numbers of animals used in experimentation. However, they lack the complexity of the developmental processes and the dynamic interchange between the maternal and the developing organisms. These systems cannot provide assurance of the absence of effect nor provide perspective in respect of risk/exposure. In short, there are no alternative test systems to whole animals currently available for reproduction toxicity testing with the aims set out in the introduction (Note 6).
2010 Start of preparatory process at ICH level2015 Official start of Revision procedure2019 Step 4 approval by ICH2020 Step 5 regional implementationFirst ICH guidance to include information onuse and qualfication of NAMs as alternative forEFD testing
Because science develops quickly, and regulation does NOT... \rightarrowAll information on NAMs and qualification inANNEX \rightarrow ICHS5(R4) maintenance procedure
ANNEX 2 ALTERNATIVE ASSAYS 38
1.1 QUALIFICATION OF ALTERNATIVE ASSAYS FOR PREDICTION OF MEFL 38
1.2 EXAMPLES OF EFD TESTING STRATEGIES UTILIZING ALTERNATIVE ASSAYS 40
1.2.1 POTENTIAL APPROACH TO DEFER IN VIVO TESTING AS PART OF AN INTEGRATED TESTING STRATEGY 40
1.2.2 PHARMACEUTICALS EXPECTED TO BE EMBRYO-FETAL TOXICANTS 40
1.2.3 PHARMACEUTICALS INTENDED TO TREAT SEVERELY DEBILITATING OR LIFE-THREATENING DISEASES 41
1.2.4 PHARMACEUTICALS INTENDED TO TREAT LATE-LIFE ONSET DISEASES 42
1.3 REFERENCE COMPOUND LIST 43
1.3.1 POSITIVE CONTROL REFERENCE COMPOUNDS 46
1.3.2 NEGATIVE CONTROL REFERENCE COMPOUNDS 114

- To support Phase I + II clinical trials (=saving animals by attrition)
- Qualified alternative assays (predict MEFL* outcome in first species) + pEFD in a second species
- Rodent and non-rodent should be covered,
- Enable the limited inclusion of WOCBP (up to 150 WOCBP for up to 3 months).
- Known MoA (class effects, known effect on developmental pathways) (ICHS5(R3)scheme figure 1 Annex 2, p39)
- No clinically relevant exposure possible in animals
- Support for WoE assessment when equivocal results in animal studies
- Indication for severely debilitating or life-threatening diseases or late-life onset diseases

*MEFL = malformations and embryo-fetal lethality

Under ICHS5(R3), NAMs approaches should:

- provide a level of confidence for human safety assurance at least equivalent to that provided by the current testing paradigms.
- be qualified within a certain context of use, defined by
- the chemical applicability domain of the assay, and
- characterization of the biological mechanisms covered by the assay.

Qualification Criteria (ICH55[R3), P36-37):

- Description and justification of predictive model
- Which species does it predict Malformations and Embryo-fetal lethality (MEFL) for?
- Evaluation of biological plausibility of the model,
- Mechanism of embryonic development in the model + adverse effects
- Limitations of the models
- Developmental window of prediction (in vivo)
- Determination of endpoints, and when negative or positive
- Statistical evidence to predict MEFL in a species (accuracy, prediction, sensitivity, specificity etc.)
- Historical data of the test system
- Reference compounds
- list of training sets / test sets, source of data
- Description of chemical domain predicted

Reference compound list for NAMs under ICHS5(R3)

29 example Reference Compounds are listed in Annex II and published by Andrews et al, 2019.

	Contents lists available at ScienceDirect Regulatory Toxicology and Pharmacology journal homepage: www.elsevier.com/locate/yrtph	

$$
\begin{aligned}
& \text { Analysis of exposure margins in developmental toxicity studies for detection } \\
& \text { of human teratogens }
\end{aligned}
$$

Paul A. Andrews ${ }^{\mathrm{a}, *}$, Diann Blanset ${ }^{\mathrm{b}}$, Priscila Lemos Costa ${ }^{\mathrm{c}}$, Martin Green ${ }^{\mathrm{d}}$, Maia L. Green ${ }^{\mathrm{e}, 1}$,
Abigail Jacobs ${ }^{\text {d }}$, Rajkumar Kadaba ${ }^{\text {, }}$, Jose A. Lebron ${ }^{\text {e }}$, Britta Mattson ${ }^{e}$, Mary Ellen McNerney ${ }^{\text {g }}$, Daniel Minck ${ }^{\text {d }}$, Luana de Castro Oliveira ${ }^{\text {c }}$, Peter T. Theunissen ${ }^{\text {h }}$, Joseph J. DeGeorge ${ }^{\mathrm{e}, 2}$

${ }^{\text {* Merck \& Ca Inc, West Point PA, USA }}$
${ }^{\text {i Health Canada, Otrwwa, Ontario, Canada }}$
${ }^{8}$ BrisolMyers Squilb, New Bunswick, NJ, USA
${ }^{8}$ Bristol-Myers Squibb, New Brunswick, NJ, USA
${ }^{4}$ CBG-MFB, Urecht, the Netherlunds

Positive Controls	Human Teratogen	Rat MEFL	Rabbit MEFL
Acitretin	x	x	x
Aspirin	x	x	
Bosentan		x	
Busulfan	x	x	x
Carbamazepine	x	x	x
Cisplatin		x	
Cyclophosphamide	x	x	x
Cytarabine	x	x	
Dabrafenib		X	
Dasatinib		X	
Fluconazole	X	X	x
5-Fluorouracil	x	x	x
Hydroxyurea	x	X	X
Ibrutinib		x	X
Ibuprofen	x	x	
Imatinib		x	
Isotretinoin (13-cis-retinoic acid)	x	x	x
Methotrexate	x	x	x
Pazopanib		x	x
Phenytoin (Diphenylhydantoin)	x	x	x
Pomalidomide	presumed	x	x
Ribavirin		x	x
Tacrolimus		X	x
Thalidomide	x	x	x
Topiramate	X	X	X
Tretinoin (all-trans-retinoic acid)	X	X	X
Trimethadione	x	x	
Valproic acid	x	x	x
Vismodegib	presumed	x	

Cyclophosphamide
CAS No.: 50-18-0

Rat NOAEL Dose $C_{\text {max }}$ AUC	Rat LOAEL Dose $\mathrm{C}_{\text {max }}$ AUC	Rat Findings	Rabbit NOAEL Dose $\mathrm{C}_{\text {max }}$ AUC	Rabbit LOAEL Dose $C_{\text {max }}$ AUC	Rabbit Findings		Margins NOAEL/Huma LOAEL/Human	Notes		
NOAEL not identified (<2.5 $\mathrm{mg} / \mathrm{kg}$) [Chaube]	$2.5 \mathrm{mg} / \mathrm{kg}$ IP GD9 [Chaube] Cytoxan $C_{\text {max }}=4.1$ $\mu \mathrm{g} / \mathrm{mL}^{\mathrm{a}}$ $\mathrm{AUC}=3.65$ $\mu \mathrm{g} \cdot \mathrm{h} / \mathrm{mL}^{\mathrm{a}}$ PM $\mathrm{C}_{\text {max }}=0.55$ $\mu \mathrm{g} / \mathrm{mL}^{\mathrm{b}}$ $\operatorname{AUC}_{(0-24 \mathrm{~h})}=$ $2.13 \mu \mathrm{~g} \cdot \mathrm{~h} / \mathrm{mL}^{\mathrm{b}}$	$2.5 \mathrm{ma} / \mathrm{kq}$ GD9 [Chaubel embryolethal $5 \mathrm{mq} / \mathrm{kq}$ GD11 [von Kreybig, Mirkes] encephalocele, exencephaly, microcephaly, limb defects (ie, syndactyly and ectrodactyly), defective facial development (cleft palate)	$\begin{aligned} & \text { NOAEL } \\ & \text { not } \\ & \text { identified } \\ & (<30 \\ & \mathrm{mg} / \mathrm{kg}) \end{aligned}$	$30 \mathrm{mg} / \mathrm{kg}$ IV single doses on GD6-14 [Mirkes, Fritz] Cytoxan $\mathrm{C}_{\text {max }}=151$ $\mu \mathrm{g} / \mathrm{mL}^{\mathrm{c}}$ $\operatorname{AUC}_{(0-\mathrm{sh})}=$ $24.1 \mu \mathrm{~g} \cdot \mathrm{~h} / \mathrm{mL}^{d}$ PM $\mathrm{C}_{\text {max }}=0.07$ $\mu \mathrm{g} / \mathrm{mL}^{\mathrm{e}}$ $\operatorname{AUC}_{(0-8 h)}=$ 0.297 $\mu \mathrm{g} \cdot \mathrm{h} / \mathrm{mL}^{\mathrm{c}}$	embryo-fetal resportions, omphalocele, cleft lip/ palate, forelimb skeletal defects	$1600 \mathrm{mg} / \mathrm{m}^{2}(40$ $\mathrm{mg} / \mathrm{kg}$) IV (highest dose, q 3-4 weeks) ${ }^{\text {t }}$ Cytoxan $\\| \begin{aligned} & \mathrm{C}_{\mathrm{max}}=106 \mu \mathrm{~g} / \mathrm{mLg} \\ & \mathrm{AUC}=798 \\ & \mu \mathrm{~g} \cdot \mathrm{~h} / \mathrm{mLg} \end{aligned}$ PM $\\| \begin{aligned} & C_{\mathrm{max}}=14.4 \\ & \mu \mathrm{~g} / \mathrm{mL}^{\mathrm{h}} \\ & \text { AUC }=352 \\ & \mu \mathrm{~g} \cdot \mathrm{~h} / \mathrm{mL}^{\mathrm{h}} \end{aligned}$	NOAEL: rat: NOAEL not identified, but LOAEL margins were < 0.1 rabbit NOAEL not identified, but LOAEL margins were < 1.5 LOAEL: rat $C_{\text {max }}: 0.04(4.1 / 106)$ AUC: 0.005 (3.65/798)	- $\mathrm{MW} \mathrm{CP}=$ 261.086 - $\mathrm{MW} \mathrm{PM}=$ 221.018 - Cytoxan is a prodrug, MEFL has been attributed to both phosphoramide mustard (PM) and acrolein metabolites		

Since implementation of ICHS5(R3)

- No qualification exercises started at EMA
- One interested party at FDA, but not pursued further

Companies do generate data in house (60\% of responders to IQ survey, not published) Sometimes shared through submissions

Zebrafish

Whole Embryo Culture
Embryonic Stem Cells

Companies are uncertain about qualification: what is expected, consequences Regulators need to get more experienced with NAMs for regulatory purposes

EMA wants to kickstart the Qualification of NAMs 3RsWorking Party restarted in 2022

- Updating and new guidance on qualification
- Support for qualification applications
- European Specialised Expert Community (ESEC) for NAMs
- Creation of a worldwide cluster of regulators for global alignment

Innovative Task Force (ITF)

- Informal talks with EMA experts and ESEC members
- Discuss proof of concept and possibilities for qualification
- Free of charge

Formal talks with EMA before qualification (3RsWP / SAWP advice)
Formal Qualification (SAWP qualification advice)
\rightarrow EMA certificate that NAMs can be used under a certain context of use.

- Find common ground with industry to start qualifications \rightarrow
- Increase in Qualification applications \rightarrow
- Increased regulatory experience \rightarrow
- More scenarios in which NAMs can be used under ICHS5(R3) Annex II
- Obtain more human relevant mechanistic data
- Decreased use of test animals

- Increased relevance for Labeling for Pregnant women, Lactation and Fertility

GOOD MEDICINES USED
BETTER

