

## PFAS are used a lot for their nice properties



### PFAS are used in almost all industry branches and in many consumer products

#### Industry branches

Aerospace (7) Biotechnology (2)

Building and construction (5)

Chemical industry (8) Electroless plating

Electroplating (2)

Electronic industry (5) Energy sector (10)

Food production industry

Machinery and equipment

Manufacture of metal products (6)

Mining (3)

Nuclear industry

Oil & gas industry (7)

Pharmaceutical industry Photographic industry (2)

Production of plastic and rubber

(7)

Semiconductor industry (12)

Textile production (2)

Watchmaking industry

Wood industry (3)

#### Other use categories

Aerosol propellants Metallic and ceramic surfaces

Air conditioning Music instruments (3) Optical devices (3) Antifoaming agent

Ammunition Paper and packaging (2)

Apparel Particle physics

Automotive (12) Personal care products

Cleaning compositions (6) Pesticides (2) Coatings, paints and varnishes (3) Pharmaceuticals (2)

Conservation of books and Pipes, pumps, fittings and liners

manuscripts

Cook- and bakingware Plastic, rubber and resins (4)

Dispersions Printing (4)

Electronic devices (7) Refrigerant systems

Fingerprint development Sealants and adhesives (2)

Fire-fighting foam (5) Soldering (2) Soil remediation Flame retardants Floor covering including carpets and Sport article (7)

floor polish (4)

Glass (3) Stone, concrete and tile Household applications Textile and upholstery (2) Laboratory supplies, equipment and Tracing and tagging (5)

instrumentation (4)

Leather (4) Water and effluent treatment Lubricants and greases (2) Wire and cable insulation, gaskets

and hoses

Medical utensils (14)

### OECD list; 4730 PFAS

Never more in focus than now (AFFF contamination, EU phase-out, Hollywood movies, etc.)

New PFAS often shorter C-chains and thus more mobile

Ca. 1000 preregistrered and 107 registered in REACH, 2 as pesticides

All other PFAS should not be made, traded, applied or used

Severe scarcity on emission data!



## The Grand Challenge of PFAS

In 2018, OECD published an updated PFAS List

- → Over 4,000 CAS numbers identified
- → Commonality is that they are, or break down to form, highly

persistent substances



• Na CAS No. 70829-87-7









## PFAS are PMT compounds Mind the gap!

#### More polar chemicals are;

- Less regulated
- Less easy to measure analytically
- Less easy to remove in water treatment



### Analytical methods

High resolution MS, combined with suspect lists (eg NORMAN PFAS list)

→ more than 750 PFASs, belonging to more than 130 diverse classes, found in strategically selected environmental samples, biofluids or commercial products





#### (2) prospective PFAS feature identification

- feature reduction
- · mass defect filtering
- homologous series searching
   e.g. CF<sub>2</sub>-normalized mass defect plots
- · study design
  - e.g. case-control
- diagnostic fragments or neutral losses

   e.g. data-dependent acquisition
   data-independent acquisition
   all-ion-fragmentation
   in-source fragmentation
- · parallel HRMS & F-detection instruments

#### (3) molecular formula assignment

#### (4) structural characterization by MS<sup>n</sup> (n≥2)

#### (5) Structural proposal & confirmation

- based on MS<sup>n</sup> profiles
- · matching to database suspects
- · standard comparison













## Heterogeneity in occurence

Germany 41 PFAS including perfluoroalkyl acid (PFAA) precursors, ESB

Of 100 environmental samples only one sample was PFAS free

Due heterogeneity... no means to derive general environmental background levels

PFAS present in soils across the globe



#### Health effects

Associations between PFAS exposure and human health effects; eg obesitas after prenatal exposure, lipid metabolism, immune system, liver failure, renal function, thyroid hormone — important for cognitive development.

For most PFAS no well established risk assessment and ADI derived.





## Human exposure

Dietary exposure from food and drinks predominant exposure pathway

House dust, indoor air, hand wipes of less importance



## EFSA opinion (sep '20)

EFSA '20 propose single group TWI of 4.4 ng/kg bw per week for sum PFOA, PFNA, PFHxS and PFOS

Europeans partly exceed this TWI, which is of concern

Seven most prominent PFASs (PFOS, PFOA, PFHxS, PFNA, PFDA, PFUnDA, 2626 PFHpS) contributed with 96.6% and 93.4% for adults an children, respectively

Decreasing concentrations have been observed for PFOS, PFOA and in some studies PFHxS after 2000, while concentrations of PFNA, PFDA and PFUnDA increased.



#### Environmental health

Worldwide PFAS found in environmental organisms. Most PFAS detected in the environment reported concentrations are below predicted no effect concentration. However, lack of information on new PFAS, precursors and degradation products, mixture toxicity  $\rightarrow$  our understanding is incomplete





#### Removal efficiencies

Removal efficiency increase as the perfluorocarbon chain length increase





### Policy responses

Continued use  $\rightarrow$  increased environmental concentrations

Two PFAS groups are identified as SVHCs based on PMT, i.e. GenX and perfluorobutane sulfonic acid (PFBS), replacers of PFOA and PFOS respectively

PFOS and derivatives are priority hazardous substance under EU WFD, with EQS limit value of 0.65 ng/L in surface waters. Report on compliance with the PFOS EQS by 2021. Samples taken in 2013 in Northern Europe exceed EQS in 27% of river sites and 94% of Baltic Sea and Kattegat seawater (Nguyen et al., 2017).

Current call for evidence on broad PFAS restriction, with a possible date of entry in 2025.

# Essential elements for a Chemicals strategy for sustainability

Legislation (OS-OA), chemical design & essentiality, technology





#### Essential use?



Table 1 Three essentiality categories to aid the phase out of non-essential uses of chemicals of concern, exemplified with PFAS uses

| Category            | Definition                                                                                                                                                                                                                                                                           | PFAS examples                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| (1) "Non-essential" | Uses that are not essential for health and safety,<br>and the functioning of society. The use of<br>substances is driven primarily by market<br>opportunity                                                                                                                          | Dental floss, water-repellent surfer shorts, ski waxes    |
| (2) "Substitutable" | Uses that have come to be regarded as essential because they perform important functions, but where alternatives to the substances have now been developed that have equivalent functionality and adequate performance, which makes those uses of the substances no longer essential | Most uses of AFFFs, certain water-resistant textiles      |
| (3) "Essential"     | Uses considered essential because they are necessary for health or safety or other highly important purposes and for which alternatives are not yet established <sup>a</sup>                                                                                                         | Certain medical devices, occupational protective clothing |

<sup>&</sup>lt;sup>a</sup> This essentiality should not be considered permanent; rather, a constant pressure is needed to search for alternatives in order to move these uses into category 2 above.

Cousins et al '19, Env Sci Proc Imp



## Essentiality & benign-by-design

Necessary for health, safety or critical for societal functioning No available technically and economically feasible non-chemical alternatives





Equal/better functionality
Less hazardous
Less persistant/More durable
Lower emissions

#### Dec 2019: EU Green Deal





## **PERFORCE**■

Innovative Training Network (ITN) to train a new generation of creative, entrepreneurial and innovative ESRs, able to face current and future challenges and to convert knowledge and ideas into products and services for economic and social benefit

Started: 1st Jan 2020, Ends: 31st Dec 2023

15 'Early Stage Researchers' (ESRs)

Based at 13 'Beneficiaries' from 6 countries (Sweden, Germany, Netherlands, Norway, Switzerland, UK) – VU & UvA in NL

11 'Partner' organizations – KWR in NL







## AIMS

**Develop analytical tools** to better characterize total PFAS exposure

Improve understanding of PFAS exposure pathways and health effects in humans

Find solutions to PFAS contamination problems

**Improve communication** with policy makers, stakeholders, general public

Train the **next generation of scientists** to face future challenges, fostering creativity, innovation and entrepreneurship

Equip young researchers with research and transferable skills and competences

Enhance career perspectives through international, interdisciplinary and intersectoral mobility opportunities

#### Multidisciplinary, multisectoral network

WP1: Analytical tools and exposure science (ESRs 1, 2, 3, 4, 5,)

WP2: Toxicology and epidemiology (ESRs

6, 7, 8, 9, 10)

WP3: Solutions (ESRs 11, 12, 13, 14, 15)

WP4: Translation of research results for regulatory and/or stakeholder uses (All ESRs)

WP5: Training (All ESRs)

WP6: Network management (Project

management team)

WP7: Dissemination and outreach (All

ESRs)

#### Advanced understanding of PFASs

Improved risk assessment framework and policies

Alternative green chemistries

**⊠**00

New tools for **remediation** and environmental **monitoring** 

New thinking for improved **health protection** and promoting **societal** sustainability

Improved EU doctoral training addressing needs of academic and non-academic employers

Next generation of (15) internationally competitive creative scientists and innovators with broad career perspectives across multiple sectors

#### WP6 Network management



Coordinator lan Cousins (SU)



Assistant Coordinator Jon Benskin (SU)



**Project Manager** Ana Cordeiro (SU)

WP1 **Analytical Tools** & Exposure Science

Annemarie van Wezel (UvA) **ESRs 1-5** 



WP2 Toxicology & **Epidemiology** 

Albert Braeuning (BfR) ESRs 6-10



WP3 'Solutions'

Lutz Ahrens (SLU) ESRs 11-15



WP4 Translation of research results

**Dorte Herzke** (NILU) ESRs 1-15



WP5 Training

Helen Håkansson (KI) ESRs 1-15

WP7 Dissemination & outreach

Project

Management

Team

(PMT)

Jon Benskin (SU)

ESRs 1-15