

Organ-on-a-chip: practical applications & challenges

Remko van Vught

A leap forward in physiological relevance

The challenge of reductionism:

"Make things as simple as possible, but not simpler", Albert Einstein

Animal testing

Human tissues Co-culture Perfused ECM embedded **Tubes & vessels**

PhaseGuide™

Vulto et al 2011 Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab Chip 11(9) 1596-1602

Watch full movie https://youtu.be/L_VEJAZ5J6U

Watch full movie https://youtu.be/L_VEJAZ5J6U

Organ models in the OrganoPlate®

Tube seeding in OrganoPlates®

Human Proximal Tubule Model

- Human Renal Proximal Tubular Epithelial Cells form a tube in the 3-lane OrganoPlate®
- RPTECs are polarized (cilia on apical surface) and express tight junction markers

NephroScreen: toxicity screening with a proximal tubule-on-a-chip

NephroScreen assay availability

	ciPTEC-OAT1		Sigma-RPTEC	
	2D	OrganoPlate®	2D	OrganoPlate
/iability				
WST		S		
Calcein				
PI/YoPro®			ND	ND
ecreted/leaky enzymes				
LDH		S		S
NAG		S	ND	ND
GGT		ND		ND
ecreted proteins				
KIM-1	(↓)	(↓)	ND	ND
NGAL/Lcn2			ND	ND
xpressed Proteins (IF)				
Claudin-2			ND	ND
RNA-Transcripts				
Claudin-2		S		S
Heme Oxygenase 1		S		S
TNF-α		S		S
NGAL/Lcn2		S		S
KIM-1				ND
ecreted miRNAs				
miRNA1 (confidential ID)		S	ND	ND
miRNA2 (confidential ID)		S	ND	ND
miRNA3 (confidential ID)		S	ND	ND
miRNA4 (confidential ID)		S	ND	ND
unctional Assays				
Inulin-FITC leakage	NA		NA	
Barrier integrity assay	NA		NA	S
TEER	NA		NA	
Mitochondrial potential		ND	ND	ND
ROS production		ND	ND	ND
Pgp drug-interaction		S		
MRPs drug-interaction		S		
OAT drug-interaction				
OCT2 drug-interaction			ND	ND

NephroScreen Validation Screen 2017

A range of nephrotoxicity read outs were implemented in the 3D NephroScreen and are undergoing validation using 4 benchmark compounds and 8 blinded compounds with known clinical effects supplied by the Sponsors.

Partners:

Real-time Barrier Integrity Assay

No cells (NC)

Leak tight tube (PC)

Real-time barrier integrity assay

MDCK (canine distal tubule cell line) in 3-lane OrganoPlate® Day 5: Staurosporine exposure (15h)

Dose dependent loss of barrier integrity measured in real time on tubular model

Trietsch SJ et al.: Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun 2017, Mimetas BV Leiden, 2018

- Barrier assessment
- 120 channels
- High data quality
- Realtime and long-term
- Non invasive
- Flow
- Incubator

- Launch Q3 2018
- Beta open now!

Efflux- and Influx Inhibition

 Efflux Inhibition of the Pgp (MDR1) Transporter

 Significant inhibition of calcein-AM efflux by cyclosporine-A Influx Inhibition of Glucose Analog 6-NBDG

 Significant inhibition of 6-NBDG influx by phlorizin

Case study: Cisplatin induced toxicity

- Renal toxicity has been noted in 28% to 36% of patients treated with a single dose of 50 mg/m2
- The dose is reduced when the patient's creatinine clearance (a measure of renal function) is reduced
- The maximum human plasma concentrations (Cmax) for free cisplatin is:
 - $4.5 \pm 1.6 \,\mu\text{M}$ (at dosing of 30 mg/m²)
 - $14.3 \pm 2.3 \, \mu M$ (at dosing of 100 mg/m2)
- Evaluation of a single, 48 hour exposure in Human Proximal Tubule Model using multiple end-points

Dose-dependent decreased barrier integrity of proximal tubules can be measured after
48h exposure to cisplatin

Toxicity assessment: morphological

Loss of proximal tubule viability can be observed by phase contrast imaging

Dose-dependent decrease in WST-8 signal can be measured after 48h exposure to cisplatin

 Dose-dependent increase in LDH activity can be measured in the medium of proximal tubules after 48h exposure to cisplatin

 Dose-dependant increase in H2AX expression of proximal tubules can be measured after 48h exposure to cisplatin

	5 μΜ	15 μΜ	30 μΜ	90 μΜ	270 μΜ
Barrier function					
Morphology					
Enzymatic activity (WST-8)					
Enzymatic activity (LDH)					
DNA damage					

- All readouts detected cisplatin induced toxicity after a single, 48 hour exposure.
- The DNA damage and LDH assays are most sensitive for the detection of cisplatin induced renal toxicity.

Cisplatin influences RPTEC barrier integrity after 4 day recovery after 24h exposure of 10 and 100 µM cisplatin

Repeated dosing: Modelling Treatment Effects

- Long term treatment can select and/or induce resistance
- Modelling patient specific resistance in the Organoplate®
 - Long term culture under low drug dose
 - Determine compound sensitivity of 3D cultures at different time points

Next step: Renal clearance model

- Adding a blood vessel to the kidney tube allows creation of a functional kidney unit
- Applications: renal clearance, acute kidney injury model

van Duinen V et al: 96 perfusable blood vessels to study vascular permeability in vitro. Sci Rep 2017, 7:18071.

Mimetas BV Leiden, 2018 25

Next step: Vascularized tissues

Nucblue Actingreen RFP VE-Cadherin

- Organ-on-a-chip is ready to use for safety assessment
- Kidney validation study has been completed, results will be published soon

- Assays for: Permeance, Transport and Toxicity assessment
- Long-term and repeated dosing is possible
- Low adsorption, non-PDMS material
- Excellent inter-plate and inter-lab reproducibility

27

Organ-on-a-Chip Workshop

"Perfectly organized and executed"

"The hands-on sessions are great!"

- 2-day hands-on experience
- Establish 3D cell cultures.
- Take stunning high-content images
- Leiden (The Netherlands) or Gaithersburg, MD (USA)
- Free lunch included
- Get 2 OrganoPlates® for free!
- Sign-up:

https://mimetas.com/page/workshops

Acknowledgements

the organ-on-a-chip company

Remko van Vught r.vanvught@mimetas.com www.mimetas.com

JH Oortweg 19 2333 CH Leiden The Netherlands